

Evaluation of N-LDAS Land Surface Models with Observed Surface Fluxes, Soil Moisture, and Soil Temperature

Alan Robock¹, Lifeng Luo¹, Kenneth Mitchell², Paul R. Houser³, Eric F. Wood⁴, John Schaake⁵, Dennis Lettenmaier⁶, Brian Cosgrove³, Qingyun Duan⁵, Dag Lohmann², Justin Sheffield⁴, Wayne Higgins⁷, Rachel Pinker⁸, Dan Tarpley⁹, Kenneth Crawford¹⁰, and Jeffrey Basara¹⁰

¹Department of Environmental Sciences, Rutgers University ²NOAA/NWS/NCEP/EMC

3 Hydrological Sciences Branch, NASA/GSFC

⁴Department of Civil Engineering, Princeton University
⁵NOAA/NWS/OHD

⁶Department of Civil and Environmental Engineering, University of Washington

⁷NOAA/NWS/NCEP/CPC

⁸Department of Meteorology, University of Maryland ⁹NOAA/NESDIS/ORA

¹⁰Oklahoma Climatological Survey

- 1. Test state-of-the-art land surface models for use in data assimilation.
- 2. Once we have a good model, develop a real-time land surface data assimilation system that uses in situ and remotely-sensed soil moisture, skin temperature, and snow to produce (in real time and later in a reanalysis) an accurate soil moisture data set that can be used for
 - a) retrospective land-memory predictability studies, and
 - b) real-time coupled model predictions of weather and seasonal climate

We are still in phase 1 of the project.

- 1. Use 4 different land surface models:
 - MOSAIC (NASA/GSFC)
 - NOAH (NOAA/NWS/NCEP)
 - VIC (Princeton University/University of Washington)
 - Sacramento (NOAA/OHD)
- 2. Force models with Eta model analysis (EDAS) meteorology, except use actual observed precipitation (Stage IV radar product merged with gages) and downward solar radiation (derived from satellites)
- 3. Evaluate results with all available observations, including soil moisture, soil temperature, and fluxes.

Introduction

Predominant soil type

Other Bedrock Water Organic materials Clay Silty Clay Sandy Clay Clay Loam Silty Clay Loam Sandy Clay Loam Loam Silt Silty Loam Sandy Loam Loamy Sand Sand

- · Domain
 - 125°W-67°W, 25°N-53°N
- Resolution of Model Simulations
 - $1/8^{\circ} \approx 14 \text{ km} \times 11 \text{ km}$

LDAS Scientific Questions

- 1. Can land surface models forced with observed meteorology and radiation accurately calculate soil moisture?
- 2. If not, what are the relative contributions to the differences between models and observations of errors in the soil moisture observations or of the differences between model and observed:
 - a. Forcing?
 - b. Soil properties?
 - c. Vegetation?
 - d. Scales?
 - e. Vertical resolution?
 - f. Tiling or variable infiltration assumptions?

LDAS Retrospective Runs

The four LDAS land surface schemes were run for the period from October 1, 1997 through September 30, 1999, with a one-year antecedent spinup (October 1, 1996 - September 30, 1997).

We compare the soil moisture results from these runs to observations from the dense observational networks of the Oklahoma Mesonet and ARM/CART networks.

We also performed experiments with different forcing and model parameters.

LDAS Evaluation Issues

For model evaluation, we must deal with the following issues:

- Vegetation
- VegetationVertical resolution
- · Soil type

Differences between observations and models

Precipitation
Radiation
Differences in forcing between observations and models

- · Spatial and temporal scales of soil moisture variations
- · Averaging soil moisture from a mosaic tiling approach
- Interpreting soil moisture from variable infiltration approach

Soil Moisture Observations

ARM/CART sites

· Oklahoma Mesonet sites

Oklahoma Mesonet

Background is the first most predominant surface soil classes over this region following LDAS parameters.

<u>Predominant</u> <u>soil type</u>

- Other
 BR Bedrock
 Water
 - Water
- OM Organic materials
 Clay
- sic Silty Clay
- sc Sandy Clay
- CL Clay Loam
- sicL Silty Clay Loam
- sa Sandy Clay Loam
- Loam
- Silt
- SIL Silty Loam
- 💶 Sandy Loam
- s Loamy Sand
- Sand

Oklahoma Mesonet

Precipitation at BEAV, OK

- 115 Mesonet stations covering every county of the state
- Meteorological observations are taken at 5 min intervals:
 - Relative Humidity at 1.5 m
 - Air Temperature at 1.5 m
 - Average Wind at 10 m
 - Precipitation
 - Station Pressure
 - Solar Radiation
- 72 stations have soil moisture and soil temperature observations taken at 15 min intervals.

ARM/CART

<u>Predominant</u> <u>soil type</u>

- Other
- R Bedrock
 - Water
- Om Organic materials
 - Clay
- sic Silty Clay
- c Sandy Clay
- L Clay Loam
- Silty Clay Loam
- Sandy Clay Loam
- Loam
- Silt
- Silty Loam
- Sandy Loam
 - Loamy Sand
- Sand

- 24 Extended Facilities (EF)
- 14 Surface Meteorological Observations System (SMOS) stations
 - Surface pressure
 - Precipitation
 - Air temperature
 - Humidity
 - Wind
- 14 Energy Balance Bowen Ratio (EBBR) stations
 - Latent heat flux
 - Sensible heat flux
 - Net radiation
 - Ground heat flux

- Solar Infrared Radiation Stations (SIRS)
 - Downward longwave radiation
 - Downward shortwave radiation
 - Upward longwave radiation
 - Upward shortwave radiation
- Soil Water And Temperature System (SWATS)

Soil Texture Comparison

- Soil texture is as important as vegetation in the land surface model simulations.
- Soil texture data set used by LDAS is based on 1 km Penn State STATSGO and 5 min ARS FAO data.
- At Oklahoma Mesonet and ARM/CART stations, soil texture information is also available.
- The actual station observations do not agree very well with those specified for the LDAS models.

Simulation with Matching Soil

Volumetric Soil Moisture at OK Mesonet Station NORM (35.2556°N, 97.4836°W) Obs:Silty Loam LDAS:Silty Loam

Simulation with Different Soil

Volumetric Soil Moisture at OK Mesonet Station MANG (34.8361°N, 99.4239°W) Obs:Sand LDAS:Clay Loam

Soil Moisture

Soil Moisture

Volumetric Soil Moisture over Oklahoma Region Spatially Averaged over All Available OK Mesonet Stations

Soil Moisture Anomalies

Volumetric Soil Moisture over Oklahoma Region Spatially Averaged over All Available OK Mesonet Stations (Means are defined over 01JAN98-30SEP99 for each model and obs.)

Soil Temperature

Diurnal Energy Fluxes: MOSAIC

Diurnal Energy Fluxes: NOAH

Diurnal Energy Fluxes: VIC

Answers: LDAS Scientific Questions

- 1. Can land surface models forced with observed meteorology and radiation accurately calculate soil moisture? Not yet
- 2. If not, what are the relative contributions to the differences between models and observations of errors in the soil moisture observations or of the differences between model and observed:
 - a. Forcing?
 - b. Soil properties? Yes
 - c. Vegetation? Probably
 - d. Scales? No, if using spatial average
 - e. Vertical resolution? Probably not
 - f. Tiling or variable infiltration assumptions? ?

- Models simulations of soil moisture show reasonable, but imperfect, simulations of soil moisture and temperature to Oklahoma observations.
- Differences between model output and observations exist, especially in the surface flux terms.
- These difference are not due to differences between actual and LDAS-specified forcing or random observational errors, but are likely due to soil or vegetation differences and model assumptions.
- Validation with actual observations is crucial to model improvement.

